[2C-Dimmer

Generated by Doxygen 1.7.2

Sat Dec 10 2011 12:16:43

Contents

1 12C-dimmer

1.1 Introduction
1.2 Pulse width modulation
1.21 Theoldway
1.22 Thomas'idea
1.3 12C communication
1.4 Buildingandinstalling o oo
1.5 Usage o o e
1.5.1 Connectingit
1.5.2 Talkingtoit
1.6 Drawbacks e
1.7 Filesinthe distribution.
1.8 Thanks! e
1.9 Aboutthelicense

2 Data Structure Index
2.1 DataStructures

3 File Index
3.1 FileList e

4 Data Structure Documentation

41 Command StructReference
4.1.1 Detailed Description L.
41.2 Field Documentation

4121 address
41.2.2 state
41.23 value e e e e e e

5 File Documentation

51 main.cFileReference
5.1.1 Detailed Description L
5.1.2 Define Documentation

5.1.21 CHANNEL.COUNT
51.22 OUTDDRO oo oo
51.23 OUTDDR1 o o oo e
51.24 OUTMASKO o oo
51.25 OUTMASKT o oo
5.1.2.6 OUTPORTO oot s e e e

51.2.7 OUTPORTT oo

i CONTENTS
5.1.2.8 PORT.COUNT o e e e e e e 17

5.1.2.9 STATE.COUNT oo i e et i i 17

5.1.210 STATE.START.COUNT 17

51211 TWISLA e 17

5.1.83 Enumeration Type Documentation 17
5.1.3.1 ReadCommandState 17

5.1.4 Function Documentation 18
5.1.4.1 evaluate_i2c_inputo Lo 18

5.1.4.2 initportso 18

5143 main e e e e e 18

5.1.4.4 setbrightness 18

5.1.45 setport L 19

5.1.4.6 timersstarto 19

5.1.5 Variable Documentation 19
5.1.51 command Lo e e e e 19

5.1.5.2 PROGMEM e 19

5153 switchstate 20

5.1.5.4 switch.statenewo 20

5.1.55 switch_timerindex 20

5.2 usiTwiSlave.c File Reference 20
5.2.1 Define Documentation 21
5.2.1.1 SET.USI.TO.READACK 21

5.2.1.2 SET.USI.TO.READDATA 21

5.2.1.3 SET.USI.TOSENDACK 22

5214 SET.USI.TOSENDDATA 22

5.215 SET_USI_.TO_TWI_START_CONDITION.MODE 22

5.2.2 Enumeration Type Documentation 23
5.2.21 overflowState .to 23

5.2.3 Function Documentation 23
5.2.3.1 ISR . . . e 23

5.2.3.2 ISR . . . e 24

5.2.3.3 usiTwiDatalnReceiveBuffer 24

5.2.3.4 usiTwiReceiveByte 24

5.2.35 usiTwiSlavelnit oo 24

5.2.3.6 usiTwiTransmitByte 24

5.3 usiTwiSlave.h File Reference 24
5.3.1 Define Documentation 25
5.3.1.1 TWIRXBUFFERIMASK 25

5.3.1.2 TWIRXBUFFERSIZE 25

5.3.1.3 TWITXBUFFERIMASK 25

5.3.14 TWITXBUFFERSIZE 25

5.3.2 Function Documentation 25
5.3.2.1 usiTwiDatalnReceiveBuffer 25

5.3.2.2 usiTwiReceiveByte 25

5.3.2.3 usiTwiSlavelnito 25

5.3.2.4 usiTwiTransmitByte 26

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

Chapter 1

|2C-dimmer

1.1 Introduction

| haven’'t done many microcontroller-projects till now, but more than one of the few
projects | did involved controlling LEDs by pulse width modulation (PWM). Doing this
for one or more LEDs is a stressful task for a little microcontroller, but if you want to
do some other more or less complicated things while keeping LEDs at certain bright-
nesses is likely to ruin the timings that are used in the PWM. Not to talk about the
program code, which gets more and more unreadable if you try to do several different
things 'at the same time’.

For my next project | need to fade some LEDs again, so | was looking for an easier way
to do it. The plans include reading from memory cards, talking to real time clocks and
displaying text on an LCD, so I'm almost sure that | won’t be able to reliably control the
five channels I'm going to use.

The first plan was to use a ready-made chip. | looked around and the best thing |
could find was one made by Philips (PCA something, | forgot the number) that can
be controlled via 12C-bus. That part is able to control eight LEDs, but apart from 'on’
and ’off’ you can set the LEDs only to two different brightnesses. Those are variable,
nevertheless, but it would be impossible to light one LED at 20%, one at 50% and one
at 80%. Another drawback is that it is SMD-only, and my soldering-skills don’t including
working with stuff that small.

So the Idea was to set up a separate controller for LED-fading, that can be externally
controlled, ideally via 12C-bus since | intend to use several other devices in my next
project that can make use of the bus. So | set up an ATtiny2313 on my breadboard,
clocked it with an external 20MHz-crystal and we tried to control as many LEDs as
possible...

2 12C-dimmer

1.2 Pulse width modulation

1.21 The old way

Controlling the brightness of LEDs by PWM is a common technique, | used it myself
in several projects. Till now | used to switch on all LEDs that should light up at a level
greater than zero, waited till the first of the LEDs has to be switched off, switched it off,
waited for the next one and so on. After a certain time all LEDs are switched off, and |
start again.

| try to visualize that with a little picture:

T o kkkkkkkhkkkkkkkkkkkhkkkkkkkhkhkhkkhkkhkkkkkkkkkhkhkkk | Xk kkkkkkkkkkkkkkkkkxkxk*
2 Kk hkhkhhhkhkhkhhhkhkhkkhkhhdhrhhhkhhkdhkhkhkhkdkhkrhhrhhxkx |************************
3 kkkkkkk kK | %k %k Kok Kk kK

4 I

D kkkkhkkhkhkkhkkkkkkkhkhkkkkkkkxk*x | kkkkkhkkhkkkkkkkkkkkkkkkk*

In this example, a full cycle of the PWM would need 50 units of time. The first LED is
switched on the full time (100%), the second for 40 of the 50 units (80%), the third one
for ten (20%) and the fifth one for 30 units (60%). The fourth LED is off (0%). We see
that after 50 units of time the modulation starts again.

The drawback of this technique is, that it's slow. And for each additional channel you try
to control, it gets even slower. We tried, but we weren’t able to control more than five
LEDs in this way without them to start flickering to a visible amount.

We tried to create an array with all states of the process, so the PWM only would have
to loop through the array and set the outputs accordingly. But that didn’t work either,
because the used microcontroller doesn’t have enough RAM to store the array.

1.2.2 Thomas’ idea

After some tests that didn’t work out too well, Thomas had a great idea how to implement
the PWM. It also works with an array for all states, but the states of the modulation are
not displayed for the same time. The first state is displayed for one time-unit, the second
one for two time-units, the third one for four and so on. In this way the LEDs are turned
on and off more than once per cycle of the PWM, but that doesn’t hurt.

Let’s try to paint a picture again:

1 = *

2 * % | x*

3 kxx | %% %

4 * ok Kk | * Kk K Kk
5 % * kK Kk | % * kK K
6 * ok Kk ok kK | Kk kkkk
Toxkxkx KK | %k %k xkx
8 K kokok ok kok ok |

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

* Kk Kk Kk

1.3 12C communication 3

So here we see a PWM with eight channels that are able to display up to 64 different
brightnesses. Channel one is switched on for one unit of time, channel two for two units
and so on. The most interesting thing is on channel five: the LED is switched on for one
unit of time, switched off, and switched on again for four units of time.

Lets try a more complicated example -- with brighter LEDs, too:

* *******************************‘*
* % Khkkhkkhkkhkk Ak hkhkk* | %
Kk Kk kkk kK *khkkkkhkkhkkhkkhkkhkkhkhkhkkk* ‘*******
R R R R R |
* * Kk Kk K khkkkkkhkkhkkhkkhkkhkkhk K K k% ‘* * ok ok ok

******************~k**‘ * Kk k k k ok ok ok ok k

R R R R T I 1

O ~J oy bW N

KA AKX KA KAk hkhkhkhkhkhkhkhkkhkkhkkkk*% ‘ * k k%

The channels 1 to 8 have the brightnesses 33, 18, 23, 32, 21, 63, 64 and 24.

The advantage of this technique is that on the one hand you have to save a limited
number of states (six states in the example), and the looping through the states is very
simple: state n is sent to the output pins, then we wait for 2°\(n-1) time units, then the
next state is sent.

Each state represents the bit-pattern that has to be sent during one step. In other
words: one column out of the above picture at the start of a new time period. So in this
example, we have six states: 01010101, 01100110, 01110100, 11100000, 11110110
and 01101001. The first one is displayed for one unit of time, the second one for two
units, the third one for four units and so on...

Using this technique has the advantage that adding more channels does almost nothing
in terms of system load. The only time that the algorithm has to do actual calculations is
when a new value has been delivered and has to be converted into the states. So using
this algorithm, it is possible to show different brightnesses on all free pins of the controller. With
an ATtiny2313 that means that you can fade 13 different LEDs while still talking 12C to communicate
with other devices!

1.3 12C communication

Speaking 12C is no rocket science, but since one has to do a lot of bit-shifting when
implementing it, | took a ready-made library.

The one | used is written by Donald R. Blake, he was so kind to put it under GPL and post it

to avrfreaks.net. You can find the original postinathread called’8 bit communication
between AVR using TWI’ and some additions in the thread 'T2C Slave on

an ATtiny45’.

Thanks for the great work, Donald! And for putting it under a free license.

Since his package seems to be only available as a forum-attachment, and I'm not sure
for how long that will be, I included it into the tarball of this project.

Generated on Sat Dec 10 2011 12:16:43 for 12C-Dimmer by Doxygen

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=48395
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=48395
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=51467
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=51467

4 12C-dimmer

1.4 Building and installing

The firmware is built and installed on the controller with the included makefile. You might
need to need to customize it to match your individual environment.

Don't forget to set the fuses on the controller to make use of the external crystal. This
project is using a fine algorithm, but it still needs the full power of 20MHz. The settings
| used are included in the makefile, too.

Oh, and if you want the slave to use an I2C-address different from 0x10: no problem.
Just change it in the code.

1.5 Usage

You should be able to use this device in the same way you would use any other 12C-
slave:

1.5.1 Connecting it

The controller needs to have the following pins connected in the circuit:

* Pin 1 - Reset - should be connected to VCC with a 10k-resistor

* Pin 4 and 5 - XTAL1 and XTAL2 - connected to a 20MHz-crystal, using 22p-
capacitors against GND

* Pin 10 - GND - Ground
« Pin 17 - SDA - I12C-data
» Pin 19 - SCL - 12C-clock
« Pin20-VCC -5V

Your 12C-data and -clock lines should be terminated by 4,7k-resistors to pull up the lines.
All the other pins can be used to connect LEDs. They are arranged in this way:

* Pin2 - PDO - Channel 0
* Pin 3 - PD1 - Channel 1
* Pin 6 - PD2 - Channel 2
* Pin7-PD3 - Channel 3
* Pin 8 - PD4 - Channel 4
* Pin9 - PD5 - Channel 5

* Pin 11 - PD6 - Channel 6

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

1.6 Drawbacks 5

* Pin12 - PBO - Channel 7
+ Pin 13 - PB1 - Channel 8
* Pin 14 - PB2 - Channel 9
« Pin 15 - PB3 - Channel 10
* Pin 16 - PB4 - Channel 11

* Pin 18 - PB6 - Channel 12

1.5.2 Talking to it

For my tests | used an ATmega8 as I12C-master with the library written by Peter Fleury.
Youcanfinditon http://Jjump.to/fleury. Thanks to him for putting it online!

The typical send function looks like this:

#define I2C_DIMMER 0x10

void sendi2cBytes (uint8_t address, uint8_t brightness) {
// address: number of the LED to set (0..12)
// brightness: value between 0 and 127
// start the communication...
i2c_start_wait ((I2C_DIMMER << 1) + I2C_WRITE);
// write a byte with the address. we want the highest bit of the

// address to be 1, so the slave can be sure that this is an address.

i2c_write (address | 0x80);

// calculate the actual duration the LED should light up. we could do

// this on the slave’s side, but we assume that the device is more
// flexible when it is done on the master side.
uintl6_t duration = (brightness + 1) * (brightness + 1) - 1;

// calculate the low- and the high-byte and send it. note that we split
// the duration into 7-bit-values, not 8 bit! in this way the highest
// bit of the transferred bytes is always low, allowing the slave to

// recognize the transmitted bytes as values, not as addresses.
i2c_write (duration & 0x7f); // low byte
i2c_write((duration >> 7) & 0x7f); // high byte

// stop the communication...

i2c_stop();

1.6 Drawbacks

Till now, the device worked in all situations | tested it in. So far everything is fine.

| guess that, compared to the ready-made off-the-hook-parts that controls LEDs via
I2C, this module is a bit slow. | can’t see any flickering in the LEDs since they are still
switched very fast (about every 6ms, which would result in a 166Hz flickering -- too fast
for me).

Generated on Sat Dec 10 2011 12:16:43 for 12C-Dimmer by Doxygen

http://jump.to/fleury

12C-dimmer

1.7

1.8

Files in the distribution

Readme.txt: Documentation, created from the htmldoc-directory.
htmldoc/: Documentation, created from main.c.

refman.pdf: Documentation, created from main.c.

main.c: Source code of the firmware.

main_x.hex: Compiled version of the firmware.

usiTwiSlave.c: 12C-library.

usiTwiSlave.h: 12C-library.

USI_TWI_Slave.zip: 12C-library (package).
i2c-dimmer.doxygen: Support for creating the documentation.

License.txt: Public license for all contents of this project, except for the USB driver.
Look in firmware/usbdrv/License.txt for further info.

Changelog.txt: Logfile documenting changes in soft-, firm- and hardware.

Thanks!

Once again, special credits go to Thomas Stegemann. He had the great idea for the PWM-
algorithm, and | am always astonished by the patience he has to show me how to do
anything complicated in a sick language like C...

1.9

About the license

My work is licensed under the GNU General Public License (GPL). A copy of the GPL
is included in License.txt.

(c) 2007 by Ronald Schaten- http://www.schatenseite.de

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

http://www.schatenseite.de

Chapter 2

Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

Command (Holds one command that is received via i2c)

Data Structure Index

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

main.c (Firmware for the i2c-dimmer).
usiTwiSlave.c
usiTwiSlave.h o

10

File Index

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

Chapter 4

Data Structure Documentation

41 Command Struct Reference

Holds one command that is received via i2c.

Data Fields

* uint8_t address
number of output channel (between 0 and CHANNEL_COUNT-1

* uint16_t value
value to be assigned to the channel (between 0 and 128+ 128-1 = 16383

+ ReadCommandState state

what are we waiting for?

41.1 Detailed Description

Holds one command that is received via i2c. The command consists of an address
(number of output channel) and a 16-bit value. The state is used to indicate what part
of the next command we are waiting for.

Definition at line 367 of file main.c.

4.1.2 Field Documentation
41.2.1 uint8_t Command::address

number of output channel (between 0 and CHANNEL_COUNT-1

12 Data Structure Documentation

Definition at line 368 of file main.c.

Referenced by evaluate_i2c_input().

41.2.2 ReadCommandState Command::state

what are we waiting for?
Definition at line 372 of file main.c.

Referenced by evaluate_i2c_input().

41.2.3 uint16_t Command::value

value to be assigned to the channel (between 0 and 128%128-1 = 16383
Definition at line 370 of file main.c.
Referenced by evaluate_i2c_input().

The documentation for this struct was generated from the following file:

* main.c

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

Chapter 5

File Documentation

5.1 main.c File Reference

Firmware for the i2c-dimmer.
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <util/delay.h>
#include <avr/pgmspace.h>

#include "usiTwiSlave.h"

Data Structures

« struct Command

Holds one command that is received via i2c.

Defines

* #define TWI_SLA 0x10

i2c slave address

+ #define CHANNEL_COUNT 13

number of 'fadeable’ channels

+ #define PORT_COUNT 2

the channels are distributed over two ports

14 File Documentation

+ #define OUTPORTO PORTB
output port 0

« #define OUTDDRO DDRB
set port 0 to be output

+ #define OUTMASKO Ox5F

see channel_pin, channel_port

+ #define OUTPORT1 PORTD
output port 0

« #define OUTDDR1 DDRD
set port 0 to be output

+ #define OUTMASK1 0x7F

see channel_pin, channel_port

+ #define STATE_COUNT 14

number of states for pwm

+ #define STATE_START_COUNT 2

number of state groups to be treated individually

Enumerations

+ enum ReadCommandState { WAIT_FOR_ADDRESS, WAIT_FOR_VALUE_LOW,
WAIT_FOR_VALUE_HIGH }

Three bytes have to be received for a full command.

Functions

+ void timer_start ()
initialize timer
+ void set_brightness (uint8_t channel, uint16_t brightness)

Set brightness on one channel.

+ void init_ports (void)

initialize hardware

+ void set_port (int port, uint8_t state)

set output

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

5.1 main.c File Reference 15

+ void evaluate_i2c_input (void)

Check if anything has been received via i2c and evaluate the received data.

* int main (void)

Main-function.

Variables

» const uint8_t channel_port{CHANNEL_COUNT] PROGMEM

We want to drive as many channels as possible.

« const uint8_t switch_timer_index [STATE_START_COUNT] ={ 13,0}

start interval of the state groups

» uint8_t switch_state [STATE_COUNT][PORT_COUNT]

contains the port assignments for each interval

* uint8_t switch_state_new [STATE_COUNT][PORT_COUNT]
+ Command command = {0, 0, WAIT_FOR_ADDRESS}

the next command is built in this variable

5.1.1 Detailed Description

Firmware for the i2c-dimmer.

Author

Ronald Schaten <ronald@schatenseite.de> & Thomas Stegemann

Version

main.c,v 1.1 2007/07/29 17:19:50 rschaten Exp

Permission to use, copy, modify, and distribute this software and its documentation un-
der the terms of the GNU General Public License is hereby granted. No representations
are made about the suitability of this software for any purpose. It is provided "as is" with-
out express or implied warranty. See the GNU General Public License for more details.

Definition in file main.c.

Generated on Sat Dec 10 2011 12:16:43 for 12C-Dimmer by Doxygen

mailto:ronald@schatenseite.de

16 File Documentation

5.1.2 Define Documentation
5.1.2.1 #define CHANNEL_COUNT 13

number of ‘fadeable’ channels
Definition at line 309 of file main.c.

Referenced by main().

5.1.2.2 #define OUTDDRO DDRB

set port 0 to be output
Definition at line 313 of file main.c.

Referenced by init_ports().

5.1.2.3 #define OUTDDR1 DDRD

set port 0 to be output
Definition at line 317 of file main.c.

Referenced by init_ports().

5.1.2.4 #define OUTMASKO Ox5F

see channel_pin, channel_port
Definition at line 314 of file main.c.

Referenced by init_ports(), and set_port().

5.1.2.5 i#define OUTMASK1 Ox7F

see channel_pin, channel_port
Definition at line 318 of file main.c.

Referenced by init_ports(), and set_port().

5.1.2.6 #define OUTPORTO PORTB

output port 0
Definition at line 312 of file main.c.

Referenced by init_ports(), and set_port().

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

5.1 main.c File Reference

17

5.1.2.7 #define OUTPORT1 PORTD

output port 0
Definition at line 316 of file main.c.

Referenced by init_ports(), and set_port().

5.1.2.8 #define PORT_COUNT 2

the channels are distributed over two ports
Definition at line 310 of file main.c.

Referenced by main().

5.1.2.9 {#define STATE_COUNT 14

number of states for pwm
Definition at line 340 of file main.c.

Referenced by main(), and set_brightness().

5.1.2.10 #define STATE_START_COUNT 2

number of state groups to be treated individually
Definition at line 341 of file main.c.

Referenced by main().

5.1.2.11 #define TWI_SLA 0x10

i2c slave address
Definition at line 307 of file main.c.

Referenced by main().

5.1.3 Enumeration Type Documentation

5.1.3.1 enum ReadCommandState

Three bytes have to be received for a full command.

This enum is used to indicate what part of the command we are waiting for.

Enumerator:

WAIT_FOR_ADDRESS first byte is the address
WAIT_FOR_VALUE_LOW second byte is the lower part of the value

Generated on Sat Dec 10 2011 12:16:43 for 12C-Dimmer by Doxygen

18 File Documentation

WAIT_FOR_VALUE_HIGH third byte is the higher part of the value

Definition at line 356 of file main.c.

5.1.4 Function Documentation
5.1.4.1 void evaluate_i2c_input (void)

Check if anything has been received via i2c and evaluate the received data.

The received data is set into the command variable according to the state of the com-
mand we are waiting for.

Definition at line 449 of file main.c.

References Command::address, set_brightness(), Command::state, usiTwiDatalnRe-
ceiveBuffer(), usiTwiReceiveByte(), Command::value, WAIT_FOR_ADDRESS, WAIT_-
FOR_VALUE_HIGH, and WAIT_FOR_VALUE_LOW.

Referenced by main().

5.1.4.2 void init_ports (void)

initialize hardware
Definition at line 418 of file main.c.

References OUTDDRO, OUTDDR1, OUTMASKO, OUTMASK1, OUTPORTO, and OUT-
PORT1.

Referenced by main().

5.1.43 int main (void)

Main-function.

Initializes everything and contains the main loop which controls the actual PWM output.

Returns

An integer. Whatever... :-)

Definition at line 496 of file main.c.

References CHANNEL_COUNT, evaluate_i2c_input(), init_ports(), PORT_COUNT, set_-
brightness(), set_port(), STATE_COUNT, STATE_START_COUNT, switch_state, switch_-
state_new, switch_timer_index, timer_start(), TWI_SLA, and usiTwiSlavelnit().

5.1.4.4 void set_brightness (uint8_t channel, uint16_t brightness)

Set brightness on one channel.

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

5.1 main.c File Reference

Parameters

channel | the channel to address (0 .. CHANNEL_COUNT)

brightness | the value to set (0 .. 16383)

Definition at line 395 of file main.c.

References STATE_COUNT, and switch_state_new.
Referenced by evaluate_i2c_input(), and main().
5.1.45 void set_port (int port, uint8_t state)

set output

Parameters

port | port to set

state | value to be sent to the port

Definition at line 431 of file main.c.
References OUTMASKO0, OUTMASK1, OUTPORTO, and OUTPORTA1.
Referenced by main().

5.1.4.6 void timer_start ()

initialize timer
Definition at line 381 of file main.c.

Referenced by main().

5.1.5 Variable Documentation
5.1.5.1 Command command = {0, 0, WAIT_FOR_ADDRESS }
the next command is built in this variable

Definition at line 376 of file main.c.

5.1.5.2 const uint16_t switch_timer [STATE_COUNT] PROGMEM

Initial value:
{
0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1}

We want to drive as many channels as possible.

Generated on Sat Dec 10 2011 12:16:43 for 12C-Dimmer by Doxygen

20 File Documentation

interval length of the states
this is used to determine the pin that is used for output

Unfortunately the usable pins aren’t 'in a row’, so we have to determine which channel
ends up on which port and pin. this is used to determine the port that is used for output

Definition at line 326 of file main.c.

5.1.5.3 uint8_t switch_state[STATE_COUNT][PORT_COUNT]

contains the port assignments for each interval
Definition at line 349 of file main.c.

Referenced by main().

5.1.5.4 uint8_t switch_state_new[STATE_COUNT][PORT_COUNT]

Definition at line 351 of file main.c.

Referenced by main(), and set_brightness().

5.1.5.5 const uint8_t switch_timer_index[STATE_START_COUNT] = { 13,0 }

start interval of the state groups
Definition at line 346 of file main.c.

Referenced by main().

5.2 usiTwiSlave.c File Reference

#include <avr/io.h>
#include <avr/interrupt.h>

#include "usiTwiSlave.h"

Defines

+ #define SET_USI_TO_SEND_ACK()
+ #define SET_USI_TO_READ_ACK()
+ #define SET_USI_TO_TWI_START_CONDITION_MODE()
+ #define SET_USI_TO_SEND_DATA()
+ #define SET_USI_TO_READ_DATA()

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

5.2 usiTwiSlave.c File Reference 21

Enumerations

» enum overflowState_t {
USI_SLAVE_CHECK_ADDRESS = 0x00, USI_SLAVE_SEND_DATA = 0x01, USI_-
SLAVE_REQUEST_REPLY_FROM_SEND_DATA = 0x02, USI_SLAVE_CHECK_-
REPLY_FROM_SEND_DATA = 0x03,

USI_SLAVE_REQUEST_DATA = 0x04, USI_SLAVE_GET_DATA_AND_SEND_-
ACK = 0x05}

Functions

« void usiTwiSlavelnit (uint8_t ownAddress)
« void usiTwiTransmitByte (uint8_t data)

* uint8_t usiTwiReceiveByte (void)

» bool usiTwiDatalnReceiveBuffer (void)

* ISR (USI_START_VECTOR)

* ISR (USI_OVERFLOW_VECTOR)

5.2.1 Define Documentation

5.2.1.1 #define SET_USI_.TO_READ_ACK()

Value:
{\
/* set SDA as input =/ \
DDR_USI &= ~(1 << PORT_USI_SDA); \

/* prepare ACK */ \

USIDR = 0; \

/* clear all interrupt flags, except Start Cond =*/ \
USISR = \

0 << USI_START_COND_INT) | \

1 << USIOIF) | \

1 << USIPF) | \

1 << UsIDC) | \

/* set USI counter to shift 1 bit x/ \

(0xOE << USICNTO); \

Definition at line 165 of file usiTwiSlave.c.

Referenced by ISR().

5.2.1.2 f#define SET_USI_TO_READ_DATA()

Value:
{\
/* set SDA as input =/ \
DDR_USI &= ~(1 << PORT_USI_SDA); \

Generated on Sat Dec 10 2011 12:16:43 for 12C-Dimmer by Doxygen

22 File Documentation

/* clear all interrupt flags, except Start Cond %/ \

USISR =\
(0 << USI_START_COND_INT) | (1 << USIOIF) | \
(1 << USIPF) | (1 << USIDC) | \
/+ set USI to shift out 8 bits */ \
(0x0 << USICNTO); \

Definition at line 211 of file usiTwiSlave.c.

Referenced by ISR().

5.2.1.3 #define SET_USI_TO_SEND_ACK()
Value:

{\
/* prepare ACK x/ \
USIDR = 0; \
/+ set SDA as output =/ \

DDR_USI |= (1 << PORT_USI_SDA); \
/* clear all interrupt flags, except Start Cond %/ \
USISR = \

(0 << USI_START_COND_INT) | \

(1 << USIOIF) | (1 << USIPF) | \

(1 << UsSIDC)| \

/+ set USI counter to shift 1 bit =/ \

(0xOE << USICNTO); \

Definition at line 150 of file usiTwiSlave.c.

Referenced by ISR().

5.2.1.4 i#define SET_USI_.TO_SEND_DATA()

Value:
{\
/+ set SDA as output */ \
DDR_USI |= (1 << PORT_USI_SDA); \
/+ clear all interrupt flags, except Start Cond x/ \
USISR = A\
(0 << USI_START_COND_INT) | (1 << USIOIF) | (1 << USIPF) | \
(1 << UsiIDC) | \
/+ set USI to shift out 8 bits x/ \
(0x0 << USICNTO); \

Definition at line 199 of file usiTwiSlave.c.

Referenced by ISR().

5.2.1.5 i#define SET_USI_TO_TWI_START_CONDITION_MODE()

Value:

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

5.2 usiTwiSlave.c File Reference 23

{\
USICR = \
/* enable Start Condition Interrupt, disable Overflow Interrupt =*/ \
(1 << USISIE) | (0 << USIOIE) | \
/* set USI in Two-wire mode, no USI Counter overflow hold =%/ \
(1 << USIWM1) | (0 << USIWMO) | \
/+ Shift Register Clock Source = External, positive edge */ \
/* 4-Bit Counter Source = external, both edges x/ \
(1 << USICS1) | (0 << USICSO) | (0 << USICLK) | \
/+* no toggle clock-port pin x/ \
(0 << USITC); \
USISR = \
/* clear all interrupt flags, except Start Cond x/ \
(0 << USI_START_COND_INT) | (1 << USIOIF) | (1 << USIPF) | \
(1 << USIDC) | (0x0 << USICNTO); \

Definition at line 181 of file usiTwiSlave.c.

Referenced by ISR().

5.2.2 Enumeration Type Documentation

5.2.2.1 enum overflowState_t

Enumerator:
USI_SLAVE_CHECK_ADDRESS
USI_SLAVE_SEND_DATA
USI_SLAVE_REQUEST_REPLY _FROM_SEND_DATA
USI_SLAVE_CHECK_REPLY FROM_SEND_DATA
USI_SLAVE_REQUEST _DATA
USI_SLAVE_GET _DATA_AND_SEND_ACK

Definition at line 231 of file usiTwiSlave.c.

5.2.3 Function Documentation
5.2.3.1 ISR (USI_OVERFLOW_VECTOR)

Definition at line 495 of file usiTwiSlave.c.

References SET_USI_TO_READ_ACK, SET_USI_TO_READ_DATA, SET USI_TO -
SEND_ACK, SET_USI_TO_SEND_DATA, SET_USI_TO_TWI_START_CONDITION_-
MODE, TWI_RX_BUFFER_MASK, TWI_TX_BUFFER_MASK, USI_SLAVE_CHECK_-
ADDRESS, USI_SLAVE_CHECK_REPLY_FROM_SEND_DATA, US|_SLAVE_GET _DATA_-
AND_SEND_ACK, US| _SLAVE_REQUEST DATA, US| SLAVE _REQUEST REPLY -
FROM_SEND_DATA, and USI_SLAVE_SEND_DATA.

Generated on Sat Dec 10 2011 12:16:43 for 12C-Dimmer by Doxygen

24 File Documentation

5.2.3.2 ISR (USI_START_VECTOR)

Definition at line 413 of file usiTwiSlave.c.
References USI_SLAVE_CHECK_ADDRESS.
5.2.3.3 bool usiTwiDatalnReceiveBuffer (void)
Definition at line 395 of file usiTwiSlave.c.
Referenced by evaluate_i2c_input().

5.2.3.4 uint8_t usiTwiReceiveByte (void)

Definition at line 374 of file usiTwiSlave.c.
References TWI_RX BUFFER_MASK.

Referenced by evaluate_i2c_input().

5.2.3.5 void usiTwiSlavelnit (uint8_t ownAddress)
Definition at line 298 of file usiTwiSlave.c.
Referenced by main().

5.2.3.6 void usiTwiTransmitByte (uint8_t data)

Definition at line 348 of file usiTwiSlave.c.

References TWI_TX BUFFER_MASK.

5.3 usiTwiSlave.h File Reference

#include <stdbool.h>

Defines

+ #define TWI_RX_BUFFER_SIZE (16)
+ #define TWI_RX_BUFFER_MASK (TWI_RX_BUFFER_SIZE - 1)
+ #define TWI_TX_BUFFER_SIZE (16)
« #define TWI_TX_BUFFER_MASK (TWI_TX_BUFFER_SIZE - 1)

Functions

+ void usiTwiSlavelnit (uint8_t)

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

5.3 usiTwiSlave.h File Reference

25

« void usiTwiTransmitByte (uint8_t)
« uint8_t usiTwiReceiveByte (void)
» bool usiTwiDatalnReceiveBuffer (void)

5.3.1 Define Documentation

5.3.1.1 #define TWI_LRX_BUFFER_MASK (TWI_RX_BUFFER_SIZE - 1)
Definition at line 71 of file usiTwiSlave.h.

Referenced by ISR(), and usiTwiReceiveByte().

5.3.1.2 #define TWI_LRX_BUFFER_SIZE (16)

Definition at line 70 of file usiTwiSlave.h.

5.3.1.3 #define TWI_.TX_.BUFFER_MASK (TWI_TX_BUFFER_SIZE - 1)
Definition at line 80 of file usiTwiSlave.h.

Referenced by ISR(), and usiTwiTransmitByte().

5.3.1.4 #define TWI_.TX_BUFFER_SIZE (16)

Definition at line 79 of file usiTwiSlave.h.

5.3.2 Function Documentation

5.3.2.1 bool usiTwiDatalnReceiveBuffer (void)
Definition at line 395 of file usiTwiSlave.c.
Referenced by evaluate_i2c_input().

5.3.2.2 uint8_t usiTwiReceiveByte (void)

Definition at line 374 of file usiTwiSlave.c.
References TWI_RX_BUFFER_MASK.

Referenced by evaluate_i2c_input().

5.3.2.3 void usiTwiSlavelnit (uint8_t)

Definition at line 298 of file usiTwiSlave.c.

Referenced by main().

Generated on Sat Dec 10 2011 12:16:43 for 12C-Dimmer by Doxygen

26 File Documentation

5.3.2.4 void usiTwiTransmitByte (uint8_t)

Definition at line 348 of file usiTwiSlave.c.

References TWI_TX_BUFFER_MASK.

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

Index

address
Command, 11

CHANNEL_COUNT
main.c, 16
Command, 11
address, 11
state, 12
value, 12
command
main.c, 19

evaluate_i2c_input
main.c, 18

init_ports
main.c, 18
ISR

usiTwiSlave.c, 23

main
main.c, 18
main.c, 13

CHANNEL_COUNT, 16

command, 19

evaluate_i2c_input, 18

init_ports, 18
main, 18
OUTDDRO, 16
OUTDDRT1, 16
OUTMASKO, 16
OUTMASKT1, 16
OUTPORTO, 16
OUTPORT1, 16

PORT_COUNT, 17

PROGMEM, 19

ReadCommandState, 17
set_brightness, 18

set_port, 19

STATE_COUNT, 17
STATE_START_COUNT, 17

switch_state, 20

switch_state_new, 20
switch_timer_index, 20
timer_start, 19

TWI_SLA, 17
WAIT_FOR_ADDRESS, 17
WAIT_FOR_VALUE_HIGH, 17
WAIT_FOR_VALUE_LOW, 17

OUTDDRO
main.c, 16
OUTDDR1
main.c, 16
OUTMASKO
main.c, 16
OUTMASK1
main.c, 16
OUTPORTO
main.c, 16
OUTPORT1
main.c, 16
overflowState_t
usiTwiSlave.c, 23

PORT_COUNT
main.c, 17

PROGMEM
main.c, 19

ReadCommandState
main.c, 17

set_brightness
main.c, 18
set_port
main.c, 19
SET_USI_TO_READ_ACK
usiTwiSlave.c, 21
SET _USI_TO_READ_DATA
usiTwiSlave.c, 21
SET_USI_TO_SEND_ACK
usiTwiSlave.c, 22
SET_USI_TO_SEND_DATA

28 INDEX

usiTwiSlave.c, 22 usiTwiSlave.c, 20
SET_USI_TO_TWI_START_CONDITION_- ISR, 23
MODE overflowState t, 23
usiTwiSlave.c, 22 SET_USI_TO_READ_ACK, 21
state SET_USI_TO READ_DATA, 21
Command, 12 SET_USI_TO_SEND_ACK, 22
STATE_COUNT SET_USI_TO_SEND_DATA, 22
main.c, 17 SET_USI_TO_TWI_START_CONDITION_-
STATE_START_COUNT MODE, 22
main.c, 17 USI_SLAVE_CHECK_ADDRESS, 23
switch_state USI_SLAVE_CHECK_REPLY_FROM_-
main.c, 20 SEND_DATA, 23
switch_state_new USI_SLAVE_GET_DATA_AND_SEND -
main.c, 20 ACK, 23
switch_timer_index USI_SLAVE_REQUEST_DATA, 23
main.c, 20 USI_SLAVE_REQUEST_REPLY_FROM_-
SEND_DATA, 23
timer_start USI_SLAVE_SEND_DATA, 23
main.c, 19 usiTwiDatalnReceiveBuffer, 24
TWI_RX_BUFFER_MASK usiTwiReceiveByte, 24
usiTwiSlave.h, 25 usiTwiSlavelnit, 24
TWI_RX_BUFFER_SIZE usiTwiTransmitByte, 24
usiTwiSlave.h, 25 usiTwiSlave.h, 24
TWI_SLA TWI_RX_BUFFER_MASK, 25
main.c, 17 TWI_RX_BUFFER_SIZE, 25
TWI_TX_BUFFER_MASK TWI_TX_BUFFER_MASK, 25
usiTwiSlave.h, 25 TWI_TX_BUFFER_SIZE, 25
TWI_TX_BUFFER_SIZE usiTwiDatalnReceiveBuffer, 25
usiTwiSlave.h, 25 usiTwiReceiveByte, 25
usiTwiSlavelnit, 25
USI_SLAVE_CHECK_ADDRESS usiTwiTransmitByte, 25
usiTwiSlave.c, 23 usiTwiSlavelnit
USI_SLAVE_CHECK_REPLY_FROM_SEND_- usiTwiSlave.c, 24
DATA usiTwiSlave.h, 25
usiTwiSlave.c, 23 usiTwiTransmitByte
USI_SLAVE_GET_DATA_AND_SEND_ACK usiTwiSlave.c, 24
usiTwiSlave.c, 23 usiTwiSlave.h, 25
USI_SLAVE_REQUEST_ DATA
usiTwiSlave.c, 23 value
USI_SLAVE_REQUEST_REPLY_FROM._- Command, 12
SEND_DATA
usiTwiSlave.c, 23 WAIT_FOR_ADDRESS
USI_SLAVE_SEND_DATA main.c, 17

usiTwiSlave.c, 23 WAIT_FOR_VALUE_HIGH

usiTwiDatalnReceiveBuffer main.c, 17
usiTwiSlave.c, 24 WAIT_FOR_VALUE_LOW
usiTwiSlave.h, 25 main.c, 17

usiTwiReceiveByte
usiTwiSlave.c, 24
usiTwiSlave.h, 25

Generated on Sat Dec 10 2011 12:16:43 for I2C-Dimmer by Doxygen

	I2C-dimmer
	Introduction
	Pulse width modulation
	The old way
	Thomas' idea

	I2C communication
	Building and installing
	Usage
	Connecting it
	Talking to it

	Drawbacks
	Files in the distribution
	Thanks!
	About the license

	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	Command Struct Reference
	Detailed Description
	Field Documentation
	address
	state
	value

	File Documentation
	main.c File Reference
	Detailed Description
	Define Documentation
	CHANNEL_COUNT
	OUTDDR0
	OUTDDR1
	OUTMASK0
	OUTMASK1
	OUTPORT0
	OUTPORT1
	PORT_COUNT
	STATE_COUNT
	STATE_START_COUNT
	TWI_SLA

	Enumeration Type Documentation
	ReadCommandState

	Function Documentation
	evaluate_i2c_input
	init_ports
	main
	set_brightness
	set_port
	timer_start

	Variable Documentation
	command
	PROGMEM
	switch_state
	switch_state_new
	switch_timer_index

	usiTwiSlave.c File Reference
	Define Documentation
	SET_USI_TO_READ_ACK
	SET_USI_TO_READ_DATA
	SET_USI_TO_SEND_ACK
	SET_USI_TO_SEND_DATA
	SET_USI_TO_TWI_START_CONDITION_MODE

	Enumeration Type Documentation
	overflowState_t

	Function Documentation
	ISR
	ISR
	usiTwiDataInReceiveBuffer
	usiTwiReceiveByte
	usiTwiSlaveInit
	usiTwiTransmitByte

	usiTwiSlave.h File Reference
	Define Documentation
	TWI_RX_BUFFER_MASK
	TWI_RX_BUFFER_SIZE
	TWI_TX_BUFFER_MASK
	TWI_TX_BUFFER_SIZE

	Function Documentation
	usiTwiDataInReceiveBuffer
	usiTwiReceiveByte
	usiTwiSlaveInit
	usiTwiTransmitByte

